login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305853
Inverse Weigh transform of the Fubini numbers (ordered Bell numbers, A000670).
3
1, 3, 10, 62, 446, 3975, 41098, 484152, 6390488, 93419965, 1498268466, 26159940522, 494036061550, 10035451747919, 218207845446062, 5057251219752612, 124462048466812950, 3241773988594489244, 89093816361187396674, 2576652694087236419386, 78224564280680539732266
OFFSET
1,2
LINKS
FORMULA
Product_{k>=1} (1+x^k)^a(k) = Sum_{n>=0} A000670(n) * x^n.
a(n) ~ n! / (2 * log(2)^(n+1)). - Vaclav Kotesovec, Sep 10 2019
MAPLE
g:= proc(n) option remember; `if`(n=0, 1,
add(g(n-j)*binomial(n, j), j=1..n))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= proc(n) option remember; g(n)-b(n, n-1) end:
seq(a(n), n=1..30);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1,
Sum[g[n - j] Binomial[n, j], {j, 1, n}]];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
Sum[Binomial[a[i], j] b[n - i j, i - 1], {j, 0, n/i}]]];
a[n_] := a[n] = g[n] - b[n, n - 1];
a /@ Range[1, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 11 2018
STATUS
approved