login
A118011
Complement of the Connell sequence (A001614); a(n) = 4*n - A001614(n).
7
3, 6, 8, 11, 13, 15, 18, 20, 22, 24, 27, 29, 31, 33, 35, 38, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 61, 63, 66, 68, 70, 72, 74, 76, 78, 80, 83, 85, 87, 89, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 123, 125, 127, 129, 131, 133, 135, 137, 139
OFFSET
1,1
COMMENTS
a(n) is the position of the second appearance of n in A117384, where A117384(m) = A117384(k) and k = 4*A117384(m) - m. The Connell sequence (A001614) is generated as: 1 odd, 2 even, 3 odd, ...
FORMULA
A001614(n) = A118012(a(n)).
a(n) = 2n+[(1+sqrt(8n-7))/2]. - Juri-Stepan Gerasimov Aug 25 2009
a(n) = 2*n+round(sqrt(2*n)). - Gerald Hillier, Apr 16 2015
From Robert Israel, Apr 20 2015 (Start):
a(n) = 2*n + 1 + Sum_{j=0..n-2} A023531(j).
G.f.: 2*x/(1-x)^2 + x/(1-x) * Sum_{j=0..oo} x^(j*(j+1)/2) = 2*x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
a(n) = n+A014132(n). - Chai Wah Wu, Oct 19 2024
MATHEMATICA
Table[2 n + Round[Sqrt[2 n]], {n, 70}] (* Vincenzo Librandi, Apr 16 2015 *)
PROG
(Magma) [2*n+Round(Sqrt(2*n)): n in [1..70]]; // Vincenzo Librandi, Apr 16 2015
(Python)
from math import isqrt
def A118011(n): return (m:=n<<1)+(k:=isqrt(m))+int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022
CROSSREFS
A171152 gives partial sums.
Sequence in context: A212451 A244223 A284534 * A189679 A286666 A190229
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 10 2006
STATUS
approved