The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305499 Square array A(n,k), n > 0 and k > 0, read by antidiagonals, with initial values A(1,k) = k and recurrence equations A(n+1,k) = A(n,k) for 0 < k <= n and A(n+1,k) = A(n,k) - A000035(n+k) for 0 < n < k. 0
 1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 6, 1, 1, 2, 2, 4, 5, 7, 1, 1, 2, 2, 4, 5, 7, 8, 1, 1, 2, 2, 3, 4, 6, 7, 9, 1, 1, 2, 2, 3, 4, 6, 7, 9, 10, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 1, 1, 2, 2, 3, 3, 5, 6, 8, 9, 11, 12, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 10, 11, 13 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA A(n,k) = floor((k+1)/2) for 1 <= k <= n and A(n,k) = floor((k+1)/2) + floor((k+1-n)/2) for 1 <= n < k. A(n+m,n) = floor((n+1)/2) for n > 0 and some fixed m >= 0. A(n,n+m) = floor((m+1)/2) + floor((n+1+m)/2) for n>0 and some fixed m >= 0. A(n+1,k+1) = A(n,k+1) + A(n,k) - A(n-1,k) for k > 0 and n > 1. A(n,k) = A(n,k-1) + 2*A(n,k-2) - 2*A(n,k-3) - A(n,k-4) + A(n,k-5) for n > 0 and k > 5. A(n,n) = A008619(n-1) for n > 0. A(n+1,2*n-1) = A001651(n) for n > 0. Sum_{i=1..n} A(i,i)*A209229(i) = 2^floor(log_2(n)) for n > 0. P(n,x) = Sum_{k>0} A(n,k)*x^(k-1) = (1-x^(2*n))/((1-x^n)*(1-x^2)*(1-x)) = (1+x^n)/((1-x^2)*(1-x)) for n > 0. P(n+1,x) = P(n,x) - x^n/(1-x^2) for n > 0 and P(1,x) = 1/(1-x)^2. G.f.: Sum_{n>0, k>0} A(n,k)*x^(k-1)*y^(n-1) = (1+x-2*x*y)/((1-x)*(1-x^2) * (1-y)*(1-x*y)). Conjecture: Sum_{i=1..n} A(n+1-i,i) = A211538(n+3) for n > 0. EXAMPLE The square array begins:   n\k |  1  2  3  4  5  6  7  8  9  10  11  12   ====+=======================================     1 |  1  2  3  4  5  6  7  8  9  10  11  12     2 |  1  1  3  3  5  5  7  7  9   9  11  11     3 |  1  1  2  3  4  5  6  7  8   9  10  11     4 |  1  1  2  2  4  4  6  6  8   8  10  10     5 |  1  1  2  2  3  4  5  6  7   8   9  10     6 |  1  1  2  2  3  3  5  5  7   7   9   9     7 |  1  1  2  2  3  3  4  5  6   7   8   9     8 |  1  1  2  2  3  3  4  4  6   6   8   8     9 |  1  1  2  2  3  3  4  4  5   6   7   8    10 |  1  1  2  2  3  3  4  4  5   5   7   7    11 |  1  1  2  2  3  3  4  4  5   5   6   7 etc. CROSSREFS Cf. A000012 (col 1), A054977 (col 2), A000027 (row 1), A109613 (row 2), A028310 (row 3), A008619 (main diagonal and subdiagonals). Cf. A000035, A001651, A209229, A211538. Sequence in context: A300649 A086599 A181846 * A210873 A224838 A030272 Adjacent sequences:  A305496 A305497 A305498 * A305500 A305501 A305502 KEYWORD nonn,tabl,easy AUTHOR Werner Schulte, Jun 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 23:07 EDT 2020. Contains 333260 sequences. (Running on oeis4.)