login
A305496
Positions of 2 in the fixed point of the morphism 0->120, 1->110, 2->100 applied to 1 (as in A305490).
3
8, 17, 26, 35, 44, 53, 62, 68, 71, 80, 89, 98, 107, 116, 125, 134, 143, 149, 152, 161, 170, 179, 188, 197, 206, 215, 224, 230, 233, 242, 251, 260, 269, 278, 287, 296, 305, 311, 314, 323, 332, 341, 350, 359, 368, 377, 386, 392, 395, 404, 413, 422, 431, 440
OFFSET
1,1
COMMENTS
Let u, v, w be the position sequences of 0,1,2 in A305490. They partition the positive integers, and v is also the position sequence of 0 in Stewart's choral sequence, A116178.
LINKS
EXAMPLE
Fixed point: (1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, ... )
Positions of 0: (3,6,9,12,15,18,21,23, ... ) = A305495
Positions of 1: (1,2,4,5,7,10,11,13,14, ... ) = A189636
Positions of 2: (8,17,26,35,44,53,62,68, ... ) = A305496
MATHEMATICA
z = 120;
t = Nest[Flatten[# /. {0 -> {1, 2, 0}, 1 -> {1, 1, 0},
2 -> {1, 0, 0}}] &, {0}, 9]; (* A305490 *)
Take[Flatten[Position[t, 0]], z] (* A305495 *)
Take[Flatten[Position[t, 1]], z] (* A116178 *)
Take[Flatten[Position[t, 2]], z] (* A305496 *)
Position[SubstitutionSystem[{0->{1, 2, 0}, 1->{1, 1, 0}, 2->{1, 0, 0}}, {1}, {6}][[1]], 2]//Flatten (* Harvey P. Dale, May 03 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 02 2018
STATUS
approved