login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210873
Triangle of coefficients of polynomials u(n,x) jointly generated with A210873; see the Formula section.
4
1, 1, 2, 1, 1, 3, 1, 1, 3, 4, 1, 1, 2, 8, 5, 1, 1, 2, 6, 17, 6, 1, 1, 2, 5, 18, 31, 7, 1, 1, 2, 5, 14, 47, 51, 8, 1, 1, 2, 5, 13, 41, 107, 78, 9, 1, 1, 2, 5, 13, 35, 115, 218, 113, 10, 1, 1, 2, 5, 13, 34, 98, 296, 407, 157, 11, 1, 1, 2, 5, 13, 34, 90, 276, 695, 709, 211, 12
OFFSET
1,3
COMMENTS
Column 1: 1,1,1,1,1,1,1,1,1...
Row sums: A083318 (1+2^n)
Alternating row sums: A137470
Limiting row: 1,1,2,5,13,34,..., odd-indexed Fibonacci numbers
If the term in row n and column k is written as U(n,k), then U(n,n-1)=A105163.
For a discussion and guide to related arrays, see A208510.
FORMULA
For a discussion and guide to related arrays, see A208510.
u(n,x)=x*u(n-1,x)+v(n-1,x)-1,
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First six rows:
1
1...2
1...1...3
1...1...3....4
1...1...2....8...5
1...1...2....6...17...6
First three polynomials v(n,x): 1, 1 + 2x, 1 + x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1;
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210872 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210873 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A083318 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* -A077973 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
CROSSREFS
Sequence in context: A353947 A181846 A305499 * A224838 A030272 A157128
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 29 2012
STATUS
approved