Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 02 2013 16:26:12
%S 1,1,2,1,1,3,1,1,3,4,1,1,2,8,5,1,1,2,6,17,6,1,1,2,5,18,31,7,1,1,2,5,
%T 14,47,51,8,1,1,2,5,13,41,107,78,9,1,1,2,5,13,35,115,218,113,10,1,1,2,
%U 5,13,34,98,296,407,157,11,1,1,2,5,13,34,90,276,695,709,211,12
%N Triangle of coefficients of polynomials u(n,x) jointly generated with A210873; see the Formula section.
%C Column 1: 1,1,1,1,1,1,1,1,1...
%C Row sums: A083318 (1+2^n)
%C Alternating row sums: A137470
%C Limiting row: 1,1,2,5,13,34,..., odd-indexed Fibonacci numbers
%C If the term in row n and column k is written as U(n,k), then U(n,n-1)=A105163.
%C For a discussion and guide to related arrays, see A208510.
%F For a discussion and guide to related arrays, see A208510.
%F u(n,x)=x*u(n-1,x)+v(n-1,x)-1,
%F v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
%F where u(1,x)=1, v(1,x)=1.
%e First six rows:
%e 1
%e 1...2
%e 1...1...3
%e 1...1...3....4
%e 1...1...2....8...5
%e 1...1...2....6...17...6
%e First three polynomials v(n,x): 1, 1 + 2x, 1 + x + 3x^2
%t u[1, x_] := 1; v[1, x_] := 1; z = 14;
%t u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1;
%t v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
%t Table[Expand[u[n, x]], {n, 1, z/2}]
%t Table[Expand[v[n, x]], {n, 1, z/2}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A210872 *)
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A210873 *)
%t Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
%t Table[v[n, x] /. x -> 1, {n, 1, z}] (* A083318 *)
%t Table[u[n, x] /. x -> -1, {n, 1, z}] (* -A077973 *)
%t Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
%Y Cf. A210872, A208510.
%K nonn,tabl
%O 1,3
%A _Clark Kimberling_, Mar 29 2012