The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304977 Number of unlabeled hyperforests spanning n vertices with singleton edges allowed. 1
 1, 1, 4, 14, 55, 235, 1112, 5672, 30783, 175733, 1042812, 6385278, 40093375, 257031667, 1676581863, 11098295287, 74401300872, 504290610004, 3451219615401, 23821766422463, 165684694539918, 1160267446543182, 8175446407807625, 57928670942338011, 412561582740147643 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..200 FORMULA Euler transform of b(1) = 1, b(n > 1) = A134959(n). EXAMPLE Non-isomorphic representatives of the a(3) = 14 hyperforests are the following:   {{1,2,3}}   {{3},{1,2}}   {{3},{1,2,3}}   {{1,3},{2,3}}   {{1},{2},{3}}   {{2},{3},{1,3}}   {{2},{3},{1,2,3}}   {{3},{1,2},{2,3}}   {{3},{1,3},{2,3}}   {{1},{2},{3},{2,3}}   {{1},{2},{3},{1,2,3}}   {{2},{3},{1,2},{1,3}}   {{2},{3},{1,3},{2,3}}   {{1},{2},{3},{1,3},{2,3}} PROG (PARI) \\ here b(n) is A318494 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v} seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u))-1)))} \\ Andrew Howroyd, Aug 27 2018 CROSSREFS Cf. A030019, A035053, A134954, A134955, A134956, A134957, A134958, A134959, A144959, A304867, A304911, A304912, A304918. Sequence in context: A088655 A302288 A149490 * A143406 A329777 A323787 Adjacent sequences:  A304974 A304975 A304976 * A304978 A304979 A304980 KEYWORD nonn AUTHOR Gus Wiseman, May 22 2018 EXTENSIONS Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 18:09 EDT 2020. Contains 334787 sequences. (Running on oeis4.)