login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A304977
Number of unlabeled hyperforests spanning n vertices with singleton edges allowed.
1
1, 1, 4, 14, 55, 235, 1112, 5672, 30783, 175733, 1042812, 6385278, 40093375, 257031667, 1676581863, 11098295287, 74401300872, 504290610004, 3451219615401, 23821766422463, 165684694539918, 1160267446543182, 8175446407807625, 57928670942338011, 412561582740147643
OFFSET
0,3
LINKS
FORMULA
Euler transform of b(1) = 1, b(n > 1) = A134959(n).
EXAMPLE
Non-isomorphic representatives of the a(3) = 14 hyperforests are the following:
{{1,2,3}}
{{3},{1,2}}
{{3},{1,2,3}}
{{1,3},{2,3}}
{{1},{2},{3}}
{{2},{3},{1,3}}
{{2},{3},{1,2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{2},{3},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
PROG
(PARI) \\ here b(n) is A318494 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u))-1)))} \\ Andrew Howroyd, Aug 27 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 22 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018
STATUS
approved