login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143406
Number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains a nonempty set of labels of equal size, also row sums of A143398.
2
1, 1, 4, 14, 55, 252, 1319, 7737, 50040, 351636, 2659375, 21519027, 185279186, 1688183135, 16206401020, 163376811610, 1724624368377, 19011582728772, 218312877627483, 2605840967052663, 32271957793959066, 413991491885677105, 5492584623675060620
OFFSET
0,3
FORMULA
a(n) = 1 if n=0 and a(n) = n! * Sum_{k=1..n} Sum_{i=1..floor(n/k)} i^(n-k*i)/ ((n-k*i)!*i!*k!^i) else.
EXAMPLE
a(2) = 4, because 4 forests with 2 labels exist: {1}{2}, {1}<-2, {2}<-1, {1,2}.
MAPLE
a:= n-> if n=0 then 1 else n! * add(add(i^(n-k*i)/
((n-k*i)!*i!*k!^i), i=1..floor(n/k)), k=1..n) fi:
seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A302288 A149490 A304977 * A329777 A323787 A132837
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 12 2008
STATUS
approved