login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304978
Numbers that can be expressed in more than one way as 6xy + x + y with x >= y > 0.
1
106, 155, 197, 204, 253, 288, 302, 351, 379, 400, 421, 449, 470, 498, 504, 535, 547, 554, 561, 596, 645, 652, 687, 694, 704, 729, 743, 779, 782, 792, 820, 834, 841, 873, 890, 904, 925, 939, 953, 988, 1016, 1029, 1037, 1042, 1054, 1079, 1086, 1107, 1121, 1135, 1184, 1198, 1204, 1211, 1219, 1233, 1254, 1276, 1282, 1289, 1329
OFFSET
1,1
COMMENTS
Is it possible to find a closed form formula for this sequence?
Numbers k such that 6*k+1 has at least 5 divisors == 1 (mod 6). - Robert Israel, Jan 20 2019
LINKS
EXAMPLE
106 is in this sequence because 106 can be expressed in two different ways as 6xy + x + y: 6*8*2 + 8 + 2 and 6*15*1 + 15 + 1.
MAPLE
filter:= proc(n) nops(select(t -> t mod 6 =1, numtheory:-divisors(6*n+1)))>= 5 end proc:
select(filter, [$1..2000]); # Robert Israel, Jan 20 2019
MATHEMATICA
Select[Range[1329], 2 == Length@ FindInstance[ 6*x*y+x+y == # && x >= y > 0, {x, y}, Integers, 2] &] (* Giovanni Resta, May 29 2018 *)
PROG
(Python)
# Finding duplicates in matrix A where {a_ij}=6*i*j+i+j
def cuenta(a):
repa=[]
dupo=[]
k=0
sumo=0
while k<len(a)-1:
j=k+1
dupa = 1
while j<len(a) and a[j]==a[k]:
dupa +=1
j+=1
if dupa>1:
repa.append(a[k])
dupo.append(dupa)
sumo +=(dupa-1)
k +=dupa
return repa, dupo, sumo
kuno = []
for k in range(1, a + 1):
for j in range(1, k + 1):
m=6 * k * j + k + j
if m <= NN // 6: kuno.append(m)
kuno=sorted(kuno)
repkuno, dupkuno, suno= cuenta(kuno)
print(repkuno)
#
#END
(PARI) is(n) = my(i=0); for(x=1, n, for(y=1, x, if(n==6*x*y+x+y, i++; if(i==2, return(1))))); 0 \\ Felix Fröhlich, May 29 2018
CROSSREFS
Subsequence of A067611.
Sequence in context: A163625 A070796 A045093 * A078776 A188006 A160725
KEYWORD
nonn
AUTHOR
Pedro Caceres, May 22 2018
STATUS
approved