Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #47 Sep 25 2023 14:32:05
%S 106,155,197,204,253,288,302,351,379,400,421,449,470,498,504,535,547,
%T 554,561,596,645,652,687,694,704,729,743,779,782,792,820,834,841,873,
%U 890,904,925,939,953,988,1016,1029,1037,1042,1054,1079,1086,1107,1121,1135,1184,1198,1204,1211,1219,1233,1254,1276,1282,1289,1329
%N Numbers that can be expressed in more than one way as 6xy + x + y with x >= y > 0.
%C Is it possible to find a closed form formula for this sequence?
%C Numbers k such that 6*k+1 has at least 5 divisors == 1 (mod 6). - _Robert Israel_, Jan 20 2019
%H Robert Israel, <a href="/A304978/b304978.txt">Table of n, a(n) for n = 1..10000</a>
%e 106 is in this sequence because 106 can be expressed in two different ways as 6xy + x + y: 6*8*2 + 8 + 2 and 6*15*1 + 15 + 1.
%p filter:= proc(n) nops(select(t -> t mod 6 =1, numtheory:-divisors(6*n+1)))>= 5 end proc:
%p select(filter, [$1..2000]); # _Robert Israel_, Jan 20 2019
%t Select[Range[1329], 2 == Length@ FindInstance[ 6*x*y+x+y == # && x >= y > 0, {x, y}, Integers, 2] &] (* _Giovanni Resta_, May 29 2018 *)
%o (Python)
%o # Finding duplicates in matrix A where {a_ij}=6*i*j+i+j
%o def cuenta(a):
%o repa=[]
%o dupo=[]
%o k=0
%o sumo=0
%o while k<len(a)-1:
%o j=k+1
%o dupa = 1
%o while j<len(a) and a[j]==a[k]:
%o dupa +=1
%o j+=1
%o if dupa>1:
%o repa.append(a[k])
%o dupo.append(dupa)
%o sumo +=(dupa-1)
%o k +=dupa
%o return repa, dupo,sumo
%o kuno = []
%o for k in range(1, a + 1):
%o for j in range(1, k + 1):
%o m=6 * k * j + k + j
%o if m <= NN // 6: kuno.append(m)
%o kuno=sorted(kuno)
%o repkuno, dupkuno, suno= cuenta(kuno)
%o print(repkuno)
%o #
%o #END
%o (PARI) is(n) = my(i=0); for(x=1, n, for(y=1, x, if(n==6*x*y+x+y, i++; if(i==2, return(1))))); 0 \\ _Felix Fröhlich_, May 29 2018
%Y Subsequence of A067611.
%K nonn
%O 1,1
%A _Pedro Caceres_, May 22 2018