login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A304273
The concatenation of the first n terms is the smallest positive even number with n digits when written in base 3/2 (cf. A024629).
4
2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0
OFFSET
1,1
COMMENTS
This sequence exists since the smallest even integers (see A303500) are prefixes of each other.
Apparently a variant of A205083. - R. J. Mathar, Jun 09 2018
LINKS
B. Chen, R. Chen, J. Guo, S. Lee et al., On Base 3/2 and its Sequences, arXiv:1808.04304 [math.NT], 2018.
FORMULA
For n>1, a(n) = A304274(n-1) - 1.
EXAMPLE
The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore 210 is the smallest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the smallest even integer with 2 digits in base 3/2.
MAPLE
b:= proc(n) option remember; `if`(n<2, 2*n,
(t-> t+irem(t, 2))(b(n-1)*3/2))
end:
a:= n-> b(n)-3/2*b(n-1):
seq(a(n), n=1..105); # Alois P. Heinz, Jun 21 2018
MATHEMATICA
b[n_] := b[n] = If[n < 2, 2*n, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n] - 3/2 b[n - 1]; Table[a[n], {n, 1, 105}] (* Robert P. P. McKone, Feb 12 2021 *)
KEYWORD
nonn,base
AUTHOR
Tanya Khovanova and PRIMES STEP Senior group, May 09 2018
EXTENSIONS
More terms from Alois P. Heinz, Jun 21 2018
STATUS
approved