login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303009
Numbers n such that both A002450(n)=(2^(2n)-1)/3 and A007583(n)=2*A002450(n)+1 are Fermat pseudoprimes to base 2 (A001567).
5
23, 29, 41, 53, 89, 113, 131, 179, 191, 233, 239, 251, 281, 293, 341, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1013, 1019, 1031, 1049, 1103, 1223, 1229, 1271, 1289, 1409, 1439, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003
OFFSET
1,1
COMMENTS
It can be shown that if n is odd, it is a prime or a Fermat 4-pseudoprime (A020136) not divisible by 3. Similarly, 2n+1 is a prime or a Fermat 2-pseudoprime (A001567) not divisible by 3. In fact, the sequence is the union of the following six:
(i) primes n such that 2n+1 is prime (cf. A005384) and A007583(n) is composite, with smallest such term n=a(1)=23;
(ii) primes n==2 (mod 3) such that 2n+1 is a 2-psp (no such terms are known);
(iii) 4-pseudoprimes n==5 (mod 6) such that 2n+1 is prime and A007583(n) is composite, with smallest such term n=a(15)=341;
(iv) 4-pseudoprimes n==5 (mod 6) such that 2n+1 is 2-pseudoprime, with smallest such term n=268435455;
(v) n=2k, where 4k is in A015921 and k==1 (mod 3), such that 2n+1 is prime and A007583(n) is composite, with the smallest such term n=67166;
(vi) n=2k, where 4k is in A015921 and k==1 (mod 3), such that 2n+1 is a 2-psp, with the smallest such term n=9042986.
KEYWORD
nonn
AUTHOR
Max Alekseyev, Apr 23 2018
EXTENSIONS
Edited by Max Alekseyev, Aug 08 2019
STATUS
approved