The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301973 a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4. 0
 0, 1, 4, 15, 50, 140, 336, 714, 1380, 2475, 4180, 6721, 10374, 15470, 22400, 31620, 43656, 59109, 78660, 103075, 133210, 170016, 214544, 267950, 331500, 406575, 494676, 597429, 716590, 854050, 1011840, 1192136, 1397264, 1629705, 1892100, 2187255, 2518146, 2887924, 3299920, 3757650, 4264820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n > 2, a(n) is the n-th term of the partial sums of n-gonal pyramidal numbers (in other words, a(n) is the n-th 4-dimensional n-gonal number). LINKS Table of n, a(n) for n=0..40. Index to sequences related to pyramidal numbers Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA O.g.f.: x*(1 - 2*x + 6*x^2)/(1 - x)^6. E.g.f.: exp(x)*x*(24 + 24*x + 24*x^2 + 10*x^3 + x^4)/24. a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^5. a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). MATHEMATICA Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}] nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]! Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41] CROSSREFS Cf. A000292, A000332, A001296, A002415, A006484, A060354, A080852, A256859, A291288 (partial sums), A292551. Sequence in context: A053406 A225265 A143215 * A132308 A372015 A026110 Adjacent sequences: A301970 A301971 A301972 * A301974 A301975 A301976 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Mar 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 8 22:12 EDT 2024. Contains 375759 sequences. (Running on oeis4.)