OFFSET
0,3
COMMENTS
For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).
FORMULA
O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020
EXAMPLE
For n = 5 we have:
----------------------------
0 1 2 3 4 [5]
----------------------------
0, 1, 5, 12, 22, 35, ... A000326 (pentagonal numbers)
0, 1, 6, 18, 40, 75, ... A002411 (pentagonal pyramidal numbers)
0, 1, 7, 25, 65, 140, ... A001296 (4-dimensional pyramidal numbers)
----------------------------
therefore a(5) = 570.
MATHEMATICA
Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 29 2018
STATUS
approved