Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jan 30 2020 21:29:18
%S 0,1,4,21,112,570,2772,13013,59488,266526,1175720,5123426,22108704,
%T 94645460,402503220,1702300725,7165821120,30043474230,125523450360,
%U 522857438070,2172127120800,9002522512620,37233403401480,153704429299746,633442159732032,2606543487445100,10710790748646352,43957192722175908
%N a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).
%C For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).
%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%F O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
%F E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
%F a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
%F a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
%F D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Jan 27 2020
%e For n = 5 we have:
%e ----------------------------
%e 0 1 2 3 4 [5]
%e ----------------------------
%e 0, 1, 5, 12, 22, 35, ... A000326 (pentagonal numbers)
%e 0, 1, 6, 18, 40, 75, ... A002411 (pentagonal pyramidal numbers)
%e 0, 1, 7, 25, 65, 140, ... A001296 (4-dimensional pyramidal numbers)
%e 0, 1, 8, 33, 98, 238, ... A051836 (partial sums of A001296)
%e 0, 1, 9, 42, 140, 378, ... A051923 (partial sums of A051836)
%e 0, 1, 10, 52, 192, [570], ... A050494 (partial sums of A051923)
%e ----------------------------
%e therefore a(5) = 570.
%t Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
%t nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
%t nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
%t Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]
%Y Cf. A000984, A002457, A006484, A057145, A060354, A080851, A080852, A100119, A180266, A275490, A292551.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Mar 29 2018