login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4.
0

%I #5 Mar 29 2018 15:25:51

%S 0,1,4,15,50,140,336,714,1380,2475,4180,6721,10374,15470,22400,31620,

%T 43656,59109,78660,103075,133210,170016,214544,267950,331500,406575,

%U 494676,597429,716590,854050,1011840,1192136,1397264,1629705,1892100,2187255,2518146,2887924,3299920,3757650,4264820

%N a(n) = (n^2 - 3*n + 6)*binomial(n+2,3)/4.

%C For n > 2, a(n) is the n-th term of the partial sums of n-gonal pyramidal numbers (in other words, a(n) is the n-th 4-dimensional n-gonal number).

%H <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F O.g.f.: x*(1 - 2*x + 6*x^2)/(1 - x)^6.

%F E.g.f.: exp(x)*x*(24 + 24*x + 24*x^2 + 10*x^3 + x^4)/24.

%F a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^5.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

%t Table[(n^2 - 3 n + 6) Binomial[n + 2, 3]/4, {n, 0, 40}]

%t nmax = 40; CoefficientList[Series[x (1 - 2 x + 6 x^2)/(1 - x)^6, {x, 0, nmax}], x]

%t nmax = 40; CoefficientList[Series[Exp[x] x (24 + 24 x + 24 x^2 + 10 x^3 + x^4)/24, {x, 0, nmax}], x] Range[0, nmax]!

%t Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^5, {x, 0, n}], {n, 0, 40}]

%t LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 4, 15, 50, 140}, 41]

%Y Cf. A000292, A000332, A001296, A002415, A006484, A060354, A080852, A256859, A291288 (partial sums), A292551.

%K nonn,easy

%O 0,3

%A _Ilya Gutkovskiy_, Mar 29 2018