|
|
A301712
|
|
Coordination sequence for node of type V1 in "usm" 2-D tiling (or net).
|
|
38
|
|
|
1, 5, 10, 16, 22, 27, 33, 38, 43, 49, 53, 59, 65, 70, 77, 81, 86, 92, 96, 103, 108, 113, 120, 124, 130, 135, 139, 146, 151, 157, 163, 167, 173, 178, 183, 189, 194, 200, 206, 211, 216, 221, 226, 232, 238, 243, 249, 254, 259, 265, 269, 275, 281, 286, 293, 297, 302, 308, 312, 319, 324, 329, 336, 340
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023
|
|
REFERENCES
|
Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 2nd row, 2nd tiling.
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1,2,-1,0,0,1,-1).
|
|
FORMULA
|
G.f.: -(-x^10-4*x^9-5*x^8-6*x^7-7*x^6-8*x^5-7*x^4-6*x^3-5*x^2-4*x-1)/(x^10-x^9+x^6-2*x^5+x^4-x+1). - N. J. A. Sloane, Mar 29 2018
Equivalent conjecture: 5*a(n) = 27*n -b(n) -5*A014017(n-2) for n>0, where b(n) = 2,-1,1,-2,0 (5-periodic) for n>=1. - R. J. Mathar, Mar 30 2018
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 0, -1, 2, -1, 0, 0, 1, -1}, {1, 5, 10, 16, 22, 27, 33, 38, 43, 49, 53}, 100] (* Paolo Xausa, Nov 16 2023 *)
|
|
CROSSREFS
|
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|