

A301724


Coordination sequence for node of type V1 in "kra" 2D tiling (or net).


38



1, 6, 10, 16, 23, 27, 31, 38, 44, 48, 54, 60, 64, 70, 77, 81, 85, 92, 98, 102, 108, 114, 118, 124, 131, 135, 139, 146, 152, 156, 162, 168, 172, 178, 185, 189, 193, 200, 206, 210, 216, 222, 226, 232, 239, 243, 247, 254, 260, 264, 270, 276, 280, 286, 293, 297, 301, 308, 314, 318, 324, 330, 334, 340
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


REFERENCES

Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 1st row, 1st tiling.


LINKS

A. V. Maleev, A. A. Mokrova, A. V. Shutov, Coordination sequences of the 2uniform graphs (Russian), Algebra, number theory and discrete geometry: modern problems and application of past problems (2019), Proceedings of the XVI International Conference in honor of the 80th birthday of Professor Michel Deza, 262266.
Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 1).


FORMULA

G.f. = (x^10+4*x^9+6*x^7+x^6+3*x^5+x^4+6*x^3+4*x+1)/((x^4+x^3+x^2+x+1)*(x^4x^3+x^2x+1)*(x1)^2).  N. J. A. Sloane, Mar 29 2018


MATHEMATICA

CoefficientList[Series[(x^10+4x^9+6x^7+x^6+3x^5+x^4+6x^3+4x+1)/((x^4+x^3+x^2+x+1)(x^4x^3+x^2x+1)(x1)^2), {x, 0, 100}], x] (* Harvey P. Dale, Aug 08 2021 *)


CROSSREFS

Coordination sequences for the 20 2uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.


KEYWORD

nonn,easy


AUTHOR



EXTENSIONS



STATUS

approved



