login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301715
Partial sums of A301714.
1
1, 6, 18, 34, 55, 83, 114, 152, 196, 243, 299, 358, 422, 494, 567, 649, 736, 826, 926, 1027, 1135, 1250, 1366, 1492, 1621, 1755, 1898, 2042, 2194, 2351, 2511, 2680, 2852, 3030, 3215, 3403, 3598, 3798, 4002, 4213, 4429, 4650, 4878, 5110, 5347, 5591, 5838, 6092, 6352, 6615, 6887, 7162, 7442, 7730, 8019, 8317, 8620
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301714. - Ray Chandler, Aug 30 2023
FORMULA
From Colin Barker, Apr 09 2018: (Start)
G.f.: (1 + 4*x + 7*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 6*x^6 + 4*x^7 + 7*x^8 + 4*x^9+ x^10) / ((1 - x)^3*(1 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) - a(n-4) + 3*a(n-5) - 3*a(n-6) + a(n-7) + a(n-9) - 2*a(n-10) + a(n-11) for n>10. (End)
MATHEMATICA
LinearRecurrence[{2, -1, 0, -1, 3, -3, 1, 0, 1, -2, 1}, {1, 6, 18, 34, 55, 83, 114, 152, 196, 243, 299}, 100] (* Paolo Xausa, Jul 31 2024 *)
CROSSREFS
Cf. A301714.
Sequence in context: A134078 A323148 A181510 * A269755 A270135 A038343
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 26 2018
STATUS
approved