login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301711
Partial sums of A301710.
1
1, 6, 17, 34, 56, 83, 116, 155, 199, 248, 303, 364, 430, 501, 578, 661, 749, 842, 941, 1046, 1156, 1271, 1392, 1519, 1651, 1788, 1931, 2080, 2234, 2393, 2558, 2729, 2905, 3086, 3273, 3466, 3664, 3867, 4076, 4291, 4511, 4736, 4967, 5204, 5446, 5693, 5946, 6205, 6469, 6738, 7013, 7294, 7580
OFFSET
0,2
COMMENTS
Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301710. - Ray Chandler, Aug 30 2023
FORMULA
From Colin Barker, Apr 07 2018: (Start)
G.f.: (1 + 3*x + 3*x^2 + 3*x^3 + x^4) / ((1 - x)^3*(1 + x^2)).
a(n) = (1/8+i/8)*((3-3*i) + (-i)^(1+n) + i^n + (11-11*i)*n + (11-11*i)*n^2) where i=sqrt(-1).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End)
MATHEMATICA
LinearRecurrence[{3, -4, 4, -3, 1}, {1, 6, 17, 34, 56}, 100] (* Paolo Xausa, Jul 31 2024 *)
CROSSREFS
Cf. A301710.
Sequence in context: A301727 A038795 A216892 * A066486 A301719 A056109
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 26 2018
EXTENSIONS
More terms from R. J. Mathar, Mar 31 2018
STATUS
approved