login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299779
Triangle read by rows: T(n,k) is the total number of cliques of size k in all partitions of all positive integers <= n.
4
1, 2, 1, 5, 1, 1, 9, 3, 1, 1, 17, 5, 2, 1, 1, 28, 9, 4, 2, 1, 1, 47, 14, 7, 3, 2, 1, 1, 73, 24, 10, 6, 3, 2, 1, 1, 114, 35, 17, 9, 5, 3, 2, 1, 1, 170, 55, 25, 14, 8, 5, 3, 2, 1, 1, 253, 80, 38, 20, 13, 7, 5, 3, 2, 1, 1, 365, 118, 55, 31, 18, 12, 7, 5, 3, 2, 1, 1, 525, 167, 80, 44, 27, 17, 11, 7, 5, 3, 2, 1, 1
OFFSET
1,2
COMMENTS
Column k gives the partial sums of the k-th column of triangle A197126.
LINKS
FORMULA
T(n,k) = Sum_{j=k..n} A197126(j,k).
T(2n+1,n+1) = A000041(n). - Alois P. Heinz, Apr 27 2018
Sum_{k=1..n} k * T(n,k) = A284870(n). - Alois P. Heinz, May 14 2018
EXAMPLE
Triangle begins:
1;
2, 1;
5, 1, 1;
9, 3, 1, 1;
17, 5, 2, 1, 1;
28, 9, 4, 2, 1, 1;
47, 14, 7, 3, 2, 1, 1;
73, 24, 10, 6, 3, 2, 1, 1;
114, 35, 17, 9, 5, 3, 2, 1, 1;
170, 55, 25, 14, 8, 5, 3, 2, 1, 1;
253, 80, 38, 20, 13, 7, 5, 3, 2, 1, 1;
365, 118, 55, 31, 18, 12, 7, 5, 3, 2, 1, 1;
525, 167, 80, 44, 27, 17, 11, 7, 5, 3, 2, 1, 1;
...
MAPLE
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p)))
end:
T:= proc(n, k) option remember;
b(n$2, k)[2]+`if`(n<k, 0, T(n-1, k))
end:
seq(seq(T(n, k), k=1..n), n=1..20); # Alois P. Heinz, Apr 27 2018
MATHEMATICA
b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m==k, l+{0, l[[1]]}, l]][b[n-p*m, p-1, k]], {m, 0, n/p}]]];
T[n_, k_] := b[n, n, k][[2]] + If[n < k, 0, T[n-1, k]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
CROSSREFS
Column 1 gives A000097.
Row sums give A014153.
Sequence in context: A066421 A369526 A206563 * A323954 A143983 A282988
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Apr 04 2018
STATUS
approved