The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282988 Triangle of partitions of an n-set into boxes of size >= m. 2
 1, 2, 1, 5, 1, 1, 15, 4, 1, 1, 52, 11, 1, 1, 1, 203, 41, 11, 1, 1, 1, 877, 162, 36, 1, 1, 1, 1, 4140, 715, 92, 36, 1, 1, 1, 1, 21147, 3425, 491, 127, 1, 1, 1, 1, 1, 115975, 17722, 2557, 337, 127, 1, 1, 1, 1, 1, 678570, 98253, 11353, 793, 463, 1, 1, 1, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Rows n = 1..141, flattened FORMULA T(n,m) = Sum_{i=0..n-m} C(n-1, i+m-1)*T(n-i-m, m). E.g.f. m column of T(n,m) is exp(exp(x)-Sum_{k=0..m} 1/k!x^k). EXAMPLE Triangle T(n,m) begins: 1; 2, 1; 5, 1, 1; 15, 4, 1, 1; 52, 11, 1, 1, 1; 203, 41, 11, 1, 1, 1; 877, 162, 36, 1, 1, 1, 1; ... MAPLE T:= proc(n, k) option remember; `if`(n=0, 1, add( T(n-j, k)*binomial(n-1, j-1), j=k..n)) end: seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Sep 28 2017 MATHEMATICA T[n_, m_] := T[n, m] = Which[Or[n == m, n == 0], 1, m == 0, 0, True, Sum[Binomial[n - 1, i + m - 1] T[n - i - m, m], {i, 0, n - m}]]; Table[T[n, m], {n, 11}, {m, n}] // Flatten (* Michael De Vlieger, Feb 26 2017 *) PROG (Maxima) T(n, m):=if n=m or n=0 then 1 else if m=0 then 0 else sum(binomial(n-1, i+m-1)*T(n-i-m, m), i, 0, n-m); CROSSREFS Cf. A000110, A000296, A006505, A057837, A057814, A182931, A260878. Sequence in context: A299779 A323954 A143983 * A113767 A352566 A246964 Adjacent sequences: A282985 A282986 A282987 * A282989 A282990 A282991 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Feb 26 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 04:14 EDT 2024. Contains 371918 sequences. (Running on oeis4.)