login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057814
Number of partitions of an n-set into blocks of size > 4.
14
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 127, 463, 1255, 3004, 6722, 140570, 1039260, 5371627, 23202077, 90048525, 814737785, 7967774337, 62895570839, 417560407223, 2455461090505, 18440499041402, 179627278800426, 1770970802250146
OFFSET
0,11
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..589 (terms 0..300 from Alois P. Heinz)
E. A. Enneking and J. C. Ahuja, Generalized Bell numbers, Fib. Quart., 14 (1976), 67-73.
FORMULA
E.g.f.: exp(exp(x)-1-x-x^2/2-x^3/6-x^4/24).
a(0) = 1; a(n) = Sum_{k=5..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
MAPLE
G:={P=Set(Set(Atom, card>=5))}:combstruct[gfsolve](G, labeled, x):seq(combstruct[count]([P, G, labeled], size=i), i=0..27); # Zerinvary Lajos, Dec 16 2007
MATHEMATICA
max = 27; CoefficientList[ Series[ Exp[ Exp[x] - Normal[ Series[ Exp[x], {x, 0, 4}]]], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Apr 25 2012, from e.g.f. *)
CROSSREFS
Column k=4 of A293024.
Row sums of A059024.
Cf. A293040.
Sequence in context: A299363 A250892 A129537 * A038646 A340537 A245867
KEYWORD
easy,nice,nonn
AUTHOR
Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000
STATUS
approved