login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293040
E.g.f.: exp(1 + x + x^2/2! + x^3/3! + x^4/4! - exp(x)).
6
1, 0, 0, 0, 0, -1, -1, -1, -1, -1, 125, 461, 1253, 3002, 6720, -111684, -978758, -5246983, -22948029, -89534309, 164027151, 5722510249, 55413784239, 393256686307, 2377996545081, 7807749195198, -46231762188586, -1125536160278906, -12849721017510166
OFFSET
0,11
LINKS
FORMULA
a(0) = 1; a(n) = -Sum_{k=5..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Nov 20 2020
MAPLE
seq(factorial(n)*coeftayl(exp(1+x+x^2/2!+x^3/3!+x^4/4!-exp(x)), x = 0, n), n=0..50); # Muniru A Asiru, Oct 06 2017
PROG
(PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(-exp(x)+1+x+x^2/2+x^3/6+x^4/24)))
CROSSREFS
Column k=4 of A293051.
Cf. A000587 (k=0), A293037 (k=1), A293038 (k=2), A293039 (k=3), this sequence (k=4).
Cf. A057814.
Sequence in context: A059470 A316387 A250900 * A250136 A141480 A155986
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 28 2017
STATUS
approved