

A299780


Triangle read by rows: T(n,m) = number of nuniform tilings having m different arrangements of polygons about their vertices, n >= 1 and 1 <= m <= n.


2



11, 0, 20, 0, 22, 39, 0, 33, 85, 33, 0, 74, 149, 94, 15, 0, 100, 284, 187, 92, 10, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Taken from Brian Galebach's square array (see link).


LINKS

Table of n, a(n) for n=1..22.
Brian L. Galebach, nUniform Tilings
José Ezequiel Soto Sánchez, Asla Medeiros e Sá, Luiz Henrique de Figueiredo, Acquiring periodic tilings of regular polygons from images, The Visual Computer (2019) Vol. 35, Issue 68, 899907.


EXAMPLE

Triangle begins:
11;
0, 20;
0, 22, 39;
0, 33, 85, 33;
0, 74, 149, 94, 15;
0, 100, 284, 187, 92, 10;
...
Other known positive terms are T(7,7) = 7, T(8,7) = 20, T(9,8) = 8, T(10,8) = 27 and T(11,9) = 1.


CROSSREFS

Row sums gives A068599.
Leading diagonal is A068600.
Column 1 gives 11 together with A000004.
Cf. A299781, A299782.
Sequence in context: A082268 A087557 A186072 * A297873 A298136 A334370
Adjacent sequences: A299777 A299778 A299779 * A299781 A299782 A299783


KEYWORD

nonn,tabl,hard,more


AUTHOR

Omar E. Pol, Mar 30 2018


STATUS

approved



