|
|
A299780
|
|
Triangle read by rows: T(n,m) = number of n-uniform tilings having m different arrangements of polygons about their vertices, n >= 1 and 1 <= m <= n.
|
|
2
|
|
|
11, 0, 20, 0, 22, 39, 0, 33, 85, 33, 0, 74, 149, 94, 15, 0, 100, 284, 187, 92, 10, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Taken from Brian Galebach's square array (see link).
|
|
LINKS
|
Table of n, a(n) for n=1..22.
Brian L. Galebach, n-Uniform Tilings
José Ezequiel Soto Sánchez, Asla Medeiros e Sá, Luiz Henrique de Figueiredo, Acquiring periodic tilings of regular polygons from images, The Visual Computer (2019) Vol. 35, Issue 6-8, 899-907.
|
|
EXAMPLE
|
Triangle begins:
11;
0, 20;
0, 22, 39;
0, 33, 85, 33;
0, 74, 149, 94, 15;
0, 100, 284, 187, 92, 10;
...
Other known positive terms are T(7,7) = 7, T(8,7) = 20, T(9,8) = 8, T(10,8) = 27 and T(11,9) = 1.
|
|
CROSSREFS
|
Row sums gives A068599.
Leading diagonal is A068600.
Column 1 gives 11 together with A000004.
Cf. A299781, A299782.
Sequence in context: A082268 A087557 A186072 * A297873 A298136 A334370
Adjacent sequences: A299777 A299778 A299779 * A299781 A299782 A299783
|
|
KEYWORD
|
nonn,tabl,hard,more
|
|
AUTHOR
|
Omar E. Pol, Mar 30 2018
|
|
STATUS
|
approved
|
|
|
|