login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299773
a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.
5
1, 2, 3, 9, 7, 48, 15, 119, 72, 269, 56, 2740, 101, 1163, 1208, 5218, 297, 24319, 490, 42150, 6669, 14098, 1255, 792335, 5564, 42501, 30585, 432413, 4565, 4513067, 6842, 1251217, 122818, 317297, 124253, 54782479, 21637, 802541, 445414, 48590725, 44583
OFFSET
1,2
COMMENTS
If n is a noncomposite number (that is, 1 or prime), then a(n) = A000041(n).
For n >= 3, p(sigma(n-2)) < a(n) <= p(sigma(n-1)), where p(n) = A000041(n) and sigma(n) = A000203(n).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..3200 (terms 1..700 from Andrew Howroyd)
EXAMPLE
For n = 4 the sum of the divisors of 4 is 1 + 2 + 4 = 7. Then we have that, in list of colexicographically ordered partitions of 7, the divisors of 4 are in the 9th partition, so a(4) = 9 (see below):
------------------------------------------------------
k Diagram Partitions of 7
------------------------------------------------------
_ _ _ _ _ _ _
1 |_| | | | | | | [1, 1, 1, 1, 1, 1, 1]
2 |_ _| | | | | | [2, 1, 1, 1, 1, 1]
3 |_ _ _| | | | | [3, 1, 1, 1, 1]
4 |_ _| | | | | [2, 2, 1, 1, 1]
5 |_ _ _ _| | | | [4, 1, 1, 1]
6 |_ _ _| | | | [3, 2, 1, 1]
7 |_ _ _ _ _| | | [5, 1, 1]
8 |_ _| | | | [2, 2, 2, 1]
9 |_ _ _ _| | | [4, 2, 1] <---- Divisors of 4
10 |_ _ _| | | [3, 3, 1]
11 |_ _ _ _ _ _| | [6, 1]
12 |_ _ _| | | [3, 2, 2]
13 |_ _ _ _ _| | [5, 2]
14 |_ _ _ _| | [4, 3]
15 |_ _ _ _ _ _ _| [7]
.
MATHEMATICA
b[n_, k_] := b[n, k] = If[k < 1 || k > n, 0, If[n == k, 1, b[n, k + 1] + b[n - k, k]]];
PartIndex[v_] := Module[{s = 1, t = 0}, For[i = Length[v], i >= 1, i--, t += v[[i]]; s += b[t, If[i == 1, 1, v[[i - 1]]]] - b[t, v[[i]]]]; s];
a[n_] := PartIndex[Divisors[n]];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 27 2019, after Andrew Howroyd *)
PROG
(PARI) a(n)={my(d=divisors(n)); vecsearch(vecsort(partitions(vecsum(d))), d)} \\ Andrew Howroyd, Jul 15 2018
(PARI) \\ here b(n, k) is A026807.
b(n, k)=polcoeff(1/prod(i=k, n, 1-x^i + O(x*x^n)), n)
PartIndex(v)={my(s=1, t=0); forstep(i=#v, 1, -1, t+=v[i]; s+=b(t, if(i==1, 1, v[i-1])) - b(t, v[i])); s}
a(n)=PartIndex(divisors(n)); \\ Andrew Howroyd, Jul 15 2018
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 25 2018
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Jul 15 2018
STATUS
approved