OFFSET
1,3
COMMENTS
Note that n is one of the partitions of n into equal parts.
If n is even then row n ending in [p(n) - 1, p(n)], where p(n) = A000041(n).
T(n,k) > p(n - 1), if 1 < k <= A000005(n).
Removing the 1's then all terms of the sequence are in increasing order.
If n is even then row n starts with [1, p(n - 1) + 1]. - David A. Corneth and Omar E. Pol, Aug 26 2018
EXAMPLE
Triangle begins:
1;
1, 2;
1, 3;
1, 4, 5;
1, 7;
1, 8, 10, 11;
1, 15;
1, 16, 21, 22;
1, 27, 30;
1, 31, 41, 42;
1, 56;
1, 57, 69, 73, 76, 77;
1, 101;
1, 102, 134, 135;
1, 160, 172, 176;
...
For n = 6 the partitions of 6 into equal parts are [1, 1, 1, 1, 1, 1], [2, 2, 2], [3, 3] and [6]. Then we have that in the list of colexicographically ordered partitions of 6 these partitions are in the rows 1, 8, 10 and 11 respectively as shown below, so the 6th row of the triangle is [1, 8, 10, 11].
-------------------------------------------------------------
p Diagram Partitions of 6
-------------------------------------------------------------
_ _ _ _ _ _
1 |_| | | | | | [1, 1, 1, 1, 1, 1] <--- equal parts
2 |_ _| | | | | [2, 1, 1, 1, 1]
3 |_ _ _| | | | [3, 1, 1, 1]
4 |_ _| | | | [2, 2, 1, 1]
5 |_ _ _ _| | | [4, 1, 1]
6 |_ _ _| | | [3, 2, 1]
7 |_ _ _ _ _| | [5, 1]
8 |_ _| | | [2, 2, 2] <--- equal parts
9 |_ _ _ _| | [4, 2]
10 |_ _ _| | [3, 3] <--- equal parts
11 |_ _ _ _ _ _| [6] <--- equal parts
.
PROG
(PARI) row(n) = {if(n == 1, return([1])); my(nd = numdiv(n), res = vector(nd)); res[1] = 1; res[nd] = numbpart(n); if(nd > 2, t = nd - 1; p = vecsort(partitions(n)); forstep(i = #p - 1, 2, -1, if(p[i][1] == p[i][#p[i]], res[t] = i; t--; if(t==1, return(res)))), return(res))} \\ David A. Corneth, Aug 17 2018
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Mar 29 2018
EXTENSIONS
Terms a(46) and beyond from David A. Corneth, Aug 16 2018
STATUS
approved