The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299474 a(n) = 4*p(n), where p(n) is the number of partitions of n. 6
 4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For n >= 1, a(n) is also the number of edges in the diagram of partitions of n, in which A299475(n) is the number of vertices and A000041(n) is the number of regions (see example and Euler's formula). LINKS Shawn A. Broyles, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 4*A000041(n) = 2*A139582(n). a(n) = A000041(n) + A299475(n) - 1, n >= 1 (Euler's formula). a(n) = A000041(n) + A299473(n). - Omar E. Pol, Aug 11 2018 EXAMPLE Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6): -------------------------------------------------------------------------------- n ........:   1     2       3         4           5             6     (stage) a(n)......:   4     8      12        20          28            44     (edges) A299475(n):   4     7      10        16          22            34     (vertices) A000041(n):   1     2       3         5           7            11     (regions) -------------------------------------------------------------------------------- r     p(n) -------------------------------------------------------------------------------- .             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _ 1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | | 2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | | 3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | | 4                                 |_ _|   |  |_ _|   | |  |_ _|   | | | 5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | | 6                                            |_ _ _|   |  |_ _ _|   | | 7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| | 8                                                         |_ _|   |   | 9                                                         |_ _ _ _|   | 10                                                        |_ _ _|     | 11 .. 11 .................................................|_ _ _ _ _ _| . Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram. Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram. The total number of parts equals the sum of largest parts. Note that every diagram contains all previous diagrams. An infinite diagram is a table of all partitions of all positive integers. MAPLE with(combinat): seq(4*numbpart(n), n=0..50); # Muniru A Asiru, Jul 10 2018 PROG (GAP) List([0..50], n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018 (PARI) a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018 CROSSREFS k times partition numbers: A000041 (k=1), A139582 (k=2), A299473 (k=3), this sequence (k=4). Cf. A135010, A141285, A182181, A186114, A193870, A194446, A194447, A206437, A207779, A220482, A220517, A273140, A278355, A278602, A299475. Sequence in context: A194696 A302681 A002368 * A022087 A095294 A190100 Adjacent sequences:  A299471 A299472 A299473 * A299475 A299476 A299477 KEYWORD nonn AUTHOR Omar E. Pol, Feb 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 8 02:27 EDT 2020. Contains 333312 sequences. (Running on oeis4.)