login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182181
Total number of parts in the section model of partitions of A135010 with n regions.
10
1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
OFFSET
1,2
FORMULA
a(A000041(n)) = A006128(n), n >= 1.
a(A000041(n)) = A182727(A000041(n). - Omar E. Pol, May 24 2012
EXAMPLE
The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
1;
3;
6;
7, 12;
13, 20;
21, 23, 24, 35;
36, 38, 39, 54;
55, 57, 58, 62, 63, 64, 86;
87, 89, 90, 94, 95, 97, 98,128;
129,131,132,136,137,138,145,146,148,149,150,192;
193,195,196,200,201,203,204,212,213,214,217,218,219,275;
...
From Omar E. Pol, Oct 20 2014: (Start)
Illustration of initial terms:
. _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. _ _ _ |_ _|_ |_ _|_ | |_ _|_ | |_ _|_ | |
. _ _ |_ _ | |_ _ | |_ _ | | |_ _ | | |_ _ | | |
. _ |_ | |_ | | |_ | | |_ | | | |_ | | | |_ | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
. 1 3 6 7 12 13 20
.
. _ _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. |_ _|_ _ _ |_ _|_ _|_ |_ _|_ _|_ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |_ _ _ | |_ _ _ | |
. |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |
. |_ _ | | |_ _ | | |_ _ | | |_ _ | | |
. |_ _|_ | | |_ _|_ | | |_ _|_ | | |_ _|_ | | |
. |_ _ | | | |_ _ | | | |_ _ | | | |_ _ | | | |
. |_ | | | | |_ | | | | |_ | | | | |_ | | | | |
. |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 21 23 24 35
(End)
MATHEMATICA
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0, 2];
reg = {}; l = {};
For[j = 1, j <= 56, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[reg, j - i];
];
Accumulate@reg (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)
CROSSREFS
Partial sums of A194446.
Row j has length A187219(j).
Right border gives A006128.
For the definition of "region" see A206437.
Sequence in context: A038591 A333794 A349214 * A138038 A095029 A028792
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Apr 23 2012
STATUS
approved