login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.
5

%I #54 Sep 27 2019 07:58:58

%S 1,2,3,9,7,48,15,119,72,269,56,2740,101,1163,1208,5218,297,24319,490,

%T 42150,6669,14098,1255,792335,5564,42501,30585,432413,4565,4513067,

%U 6842,1251217,122818,317297,124253,54782479,21637,802541,445414,48590725,44583

%N a(n) is the index of the partition that contains the divisors of n in the list of colexicographically ordered partitions of the sum of the divisors of n.

%C If n is a noncomposite number (that is, 1 or prime), then a(n) = A000041(n).

%C For n >= 3, p(sigma(n-2)) < a(n) <= p(sigma(n-1)), where p(n) = A000041(n) and sigma(n) = A000203(n).

%H Amiram Eldar, <a href="/A299773/b299773.txt">Table of n, a(n) for n = 1..3200</a> (terms 1..700 from Andrew Howroyd)

%e For n = 4 the sum of the divisors of 4 is 1 + 2 + 4 = 7. Then we have that, in list of colexicographically ordered partitions of 7, the divisors of 4 are in the 9th partition, so a(4) = 9 (see below):

%e ------------------------------------------------------

%e k Diagram Partitions of 7

%e ------------------------------------------------------

%e _ _ _ _ _ _ _

%e 1 |_| | | | | | | [1, 1, 1, 1, 1, 1, 1]

%e 2 |_ _| | | | | | [2, 1, 1, 1, 1, 1]

%e 3 |_ _ _| | | | | [3, 1, 1, 1, 1]

%e 4 |_ _| | | | | [2, 2, 1, 1, 1]

%e 5 |_ _ _ _| | | | [4, 1, 1, 1]

%e 6 |_ _ _| | | | [3, 2, 1, 1]

%e 7 |_ _ _ _ _| | | [5, 1, 1]

%e 8 |_ _| | | | [2, 2, 2, 1]

%e 9 |_ _ _ _| | | [4, 2, 1] <---- Divisors of 4

%e 10 |_ _ _| | | [3, 3, 1]

%e 11 |_ _ _ _ _ _| | [6, 1]

%e 12 |_ _ _| | | [3, 2, 2]

%e 13 |_ _ _ _ _| | [5, 2]

%e 14 |_ _ _ _| | [4, 3]

%e 15 |_ _ _ _ _ _ _| [7]

%e .

%t b[n_, k_] := b[n, k] = If[k < 1 || k > n, 0, If[n == k, 1, b[n, k + 1] + b[n - k, k]]];

%t PartIndex[v_] := Module[{s = 1, t = 0}, For[i = Length[v], i >= 1, i--, t += v[[i]]; s += b[t, If[i == 1, 1, v[[i - 1]]]] - b[t, v[[i]]]]; s];

%t a[n_] := PartIndex[Divisors[n]];

%t a /@ Range[1, 100] (* _Jean-François Alcover_, Sep 27 2019, after _Andrew Howroyd_ *)

%o (PARI) a(n)={my(d=divisors(n)); vecsearch(vecsort(partitions(vecsum(d))), d)} \\ _Andrew Howroyd_, Jul 15 2018

%o (PARI) \\ here b(n,k) is A026807.

%o b(n,k)=polcoeff(1/prod(i=k, n, 1-x^i + O(x*x^n)), n)

%o PartIndex(v)={my(s=1,t=0); forstep(i=#v, 1, -1, t+=v[i]; s+=b(t, if(i==1, 1, v[i-1])) - b(t, v[i])); s}

%o a(n)=PartIndex(divisors(n)); \\ _Andrew Howroyd_, Jul 15 2018

%Y Cf. A000040, A000041, A000203, A008578, A026807, A027750, A056538, A135010, A141285, A194446, A211992, A272024.

%K nonn

%O 1,2

%A _Omar E. Pol_, Mar 25 2018

%E Terms a(8) and beyond from _Andrew Howroyd_, Jul 15 2018