login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298826
a(n) = A298825(n)/n.
5
1, 0, 0, 1, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, -2, 0, 0, 0, 0, 4, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -2
OFFSET
1,8
COMMENTS
From Mats Granvik, Apr 06 2019: (Start)
Positions of nonzero entries appear to be given by A001694.
The limit lim_{k->oo} Sum_{n=1..k} a(n)/n appears to converge to some number.
Sum_{n=1..30000} a(n)/n = 1.31897... This appears to be in agreement with:
(1/30000)*Sum_{n<=30000} log(A014963(n))*log(A014963(n+2)) = 1.30351...
If the limit can be proven to converge to a number greater than 1, then it is true that Sum_{n<=X} log(A014963(n))*log(A014963(n+2)) > X, where ">" means "greater than" as in usual inequality notation.
The twin prime conjecture, according to Terence Tao on his blog, is that Sum_{n<=X} log(A014963(n))*log(A014963(n+2)) >> X where ">>" means "asymptotically greater than". There he also says that the first Hardy Littlewood conjecture states that Sum_{n<=X} log(A014963(n))*log(A014963(n+h)) = S(h)*X + o(X), where "S(h)" is the singular series.
Compare this to the prime number theorem which is lim_{X->oo} (Sum_{n<=X} log(A014963(n)))/X = 1.
(End)
FORMULA
a(n) = Sum_{k=1..n} (A298674(k, n))/n = A298825(n)/n.
Conjecture: a(n) = (-1)^(n+1) * Sum_{d|n} A076479(d). - Daniel Suteu, Apr 04 2019
From Mats Granvik, Apr 06 2019: (Start)
The Dirichlet generating function, after Daniel Suteu above and Álvar Ibeas in A076479, appears to be: Sum_{n>=1} a(n)/n^s = zeta(s)^2*(Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + Sum_{n>=2} ((1/2)/2^(n*(s - 1)))).
Conjectured formula: Let b(n) = 4*A056911(n) and c(n) = A000005(n)*A008683(n) + Sum_{j=1..length(b(1..N))} [b(j)=n]*A008836(n)*2/3) then a(n) = Sum_{k=1..n}[k|n] c(n/k)*A000005(k). (End)
Conjecture: a(n) = (-1)^(n+1) * Sum_{d|n} mu(d)*tau(d)*tau(n/d). - Ridouane Oudra, Nov 19 2019
The conjectured Dirichlet generating function simplifies to: Sum_{n>=1} a(n)/n^s = zeta(s)^2*(Product_{j>=1} (1 - 2*prime(j)^(-s)))*(1 + 2^(1 - s)/(2^s - 2)). - Steven Foster Clark, Sep 12 2022
Conjecture: abs(a(n)) = A361430(n). - Vaclav Kotesovec, Mar 12 2023
MATHEMATICA
nn = 90;
A = Table[Boole[Mod[n, k] == 0], {n, nn}, {k, nn}];
B = Table[If[Mod[k, n] == 0, MoebiusMu[n]*n, 0], {n, nn}, {k, nn}];
T = (A.B);
TwinMangoldt = Table[a = T[[All, kk]];
F1 = Table[If[Mod[n, k] == 0, a[[n/k]], 0], {n, nn}, {k, nn}];
b = T[[All, kk + 2]];
F2 = Table[ If[Mod[n, k] == 0, b[[n/k]], 0], {n, nn}, {k, nn}];
(F1.F2)[[All, 1]], {kk, nn - 2}];
TT = Transpose[TwinMangoldt];
Table[Sum[TT[[n, k]], {k, n}]/n, {n, nn - 2}]
(* From Mats Granvik, Mar 17 2019: (Start) *)
nn = 108; b = 4*Select[Range[1, nn, 2], SquareFreeQ]; bb = Table[DivisorSigma[0, n]*(MoebiusMu[n] + Sum[If[b[[j]] == n, LiouvilleLambda[n]*2/3, 0], {j, 1, Length[b]}]), {n, 1, nn}];
cc = Table[Sum[If[Mod[n, k] == 0, bb[[n/k]]*DivisorSigma[0, k], 0], {k, 1,
n}], {n, 1, nn}]
(* This faster conjectured program agrees with Antti Karttunen's precomputed \
list of numbers. *)(* (End) *)
(* Dirichlet generating function *) s=7; nn=2500; N[Zeta[s]^2*Product[(1 - 2 Prime[j]^(-s)), {j, 1, nn}]*(1 + Sum[1/2/2^(n*(s - 1)), {n, 2, nn}]), 40] (* Mats Granvik, Apr 06 2019 *)
PROG
(PARI)
up_to = 256;
DirConv(ma, h) = { my(u = matsize(ma)[1], md = matrix(u, u)); for(n=1, u-h, for(k=1, u, md[n, k] = sumdiv(k, d, ma[n, d]*ma[n+h, k/d]))); (md); };
A298826list(up_to) = { my(h=2, matA = matrix(up_to+h, up_to+h, n, k, !(n%k)), matB = matrix(up_to+h, up_to+h, n, k, (!(k%n))*moebius(n)*n), matT = matA*matB, matD = DirConv(matT, 2)); vector(up_to, i, (1/i)*sum(j=1, i, matD[j, i])); };
v298826 = A298826list(up_to);
A298826(n) = v298826[n]; \\ Antti Karttunen, Sep 30 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Mats Granvik, Jan 27 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 30 2018
STATUS
approved