login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298827
a(n) is the smallest positive integer k such that 3^n+2 divides 3^(n+k)+2.
2
4, 5, 28, 41, 84, 336, 990, 193, 1260, 5905, 75918, 10065, 318860, 2391485, 14348908, 20390382, 5031420, 31624326, 5985168, 1743333144, 8569036, 668070480, 547062516, 141214768241, 167874004756, 1270932914165, 385131186110, 2837770056420, 784347169884, 475536631360, 149093578413164, 139370386996590
OFFSET
1,1
COMMENTS
3^n+2 divides 3^(n+a(n)*m)+2 for all nonnegative integers m.
Jon E. Schoenfield noted that a(n) coincides with the multiplicative order of 3 modulo 3^n+2. This is true because 3^(n+a(n)) == 3^n mod 3^n+2 and since 3^n and 3^n+2 are coprime, 3^a(n) == 1 mod 3^n+2 and the multiplicative order is the smallest positive such number. - Chai Wah Wu, Jan 29 2018
LINKS
EXAMPLE
For n = 1, f(1) = 3^1 + 2 = 5, where f(x) = 3^x + 2. Given the last digits of f(x) form a recurring sequence of 5, 1, 9, 3 [, 5, 1, 9, 3] then whenever x = 1 mod 4, f(x) will be a multiple of f(1).
For n = 2, f(2) = 3^2 + 2 = 11. a(2) = 5. So any x = 2 mod 5 will be a multiple of 11. For instance, 27 = 2 mod 5, and f(27) = 3^27 + 2 = 7625597474989 = 11 * 693236134999.
MAPLE
seq(numtheory:-order(3, 3^n+2), n=1..100); # Robert Israel, Feb 05 2018
MATHEMATICA
Array[Block[{k = 1}, While[! Divisible[3^(# + k) + 2, 3^# + 2], k++]; k] &, 12] (* Michael De Vlieger, Feb 05 2018 *)
Table[MultiplicativeOrder[3, 3^n + 2], {n, 32}] (* Jean-François Alcover, Feb 06 2018 *)
PROG
(Python)
def fmod(n, mod):
....return (pow(3, n, mod) + 2) % mod
def f(n):
....return pow(3, n) + 2
#terms is the number of terms to generate
terms = 20
for x in range(1, terms + 1):
....div = f(x)
....y = x + 1
....while fmod(y, div) != 0:
........y += 1
....print(y - x)
(Python)
from sympy import n_order
def A298827(n):
return n_order(3, 3**n+2) # Chai Wah Wu, Jan 29 2018
(Magma) [Modorder(3, 3^n+2): n in [1..29]]; // Jon E. Schoenfield, Jan 28 2018
(PARI) a(n) = znorder(Mod(3, 3^n+2)); \\ Michel Marcus, Jan 29 2018
CROSSREFS
Cf. A168607.
Sequence in context: A270217 A270274 A271602 * A092659 A002352 A042647
KEYWORD
nonn
AUTHOR
Luke W. Richards, Jan 27 2018
EXTENSIONS
a(22)-a(32) from Robert Israel, Feb 05 2018
STATUS
approved