login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298639
Numbers k such that the digital sum of k and the digital root of k have the same parity.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114
OFFSET
1,3
COMMENTS
Numbers k such that A113217(k) = A179081(k).
Complement of A298638.
Agrees with A039691 until a(65): A039691(65) = 109 is not in this sequence.
LINKS
MATHEMATICA
fQ[n_] := Mod[Plus @@ IntegerDigits@n, 2] == Mod[Mod[n -1, 9] +1, 2]; fQ[0] = True; Select[ Range[0, 104], fQ] (* Robert G. Wilson v, Jan 26 2018 *)
PROG
(Python)
#Digital sum of n.
def ds(n):
if n < 10:
return n
return n % 10 + ds(n//10)
def A298639(term_count):
seq = []
m = 0
n = 1
while n <= term_count:
s = ds(m)
r = ((m - 1) % 9) + 1 if m else 0
if s % 2 == r % 2:
seq.append(m)
n += 1
m += 1
return seq
print(A298639(100))
(PARI) dr(n)=if(n, (n-1)%9+1);
isok(n) = (sumdigits(n) % 2) == (dr(n) % 2); \\ Michel Marcus, Jan 26 2018
(PARI) is(n)=bittest(sumdigits(n)-(n-1)%9, 0)||!n \\ M. F. Hasler, Jan 26 2018
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
J. Stauduhar, Jan 26 2018
STATUS
approved