OFFSET
0,2
COMMENTS
Repeat A114570 until one digit remains.
a(n) is the first number with persistence n in base 10.
a(n+1) <= Sum_{i=0..a(n)-1} 10^i showing the sequence is infinite.
a(n) does not necessarily pass through a(n-1) on the first step.
EXAMPLE
a(5) = 83 because:
83 -> 8^2 + 3^1 = 67;
67 -> 6^2 + 7^1 = 43;
43 -> 4^2 + 3^1 = 19;
17 -> 1^2 + 9^1 = 10;
10 -> 1^2 + 0^1 = 1;
83 is the least integer to take 5 steps to get to 1 digit.
PROG
(PARI) a114570(n) = my(d=digits(n), k=#d); sum(i=1, k, d[i]^(k+1-i));
p(n) = my(ip=0); while(n >= 10, n = a114570(n); ip++); ip;
a(n) = {my(k=1); while (p(k) != n, k++); k; } \\ Michel Marcus, Jan 25 2018
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
John Harmon, Jan 20 2018
EXTENSIONS
a(19) from Giovanni Resta, Jan 22 2018
a(20) from Giovanni Resta, Feb 01 2018
STATUS
approved