login
A298490
Number of n X 4 0..1 arrays with every element equal to 0, 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
1
8, 29, 27, 41, 101, 158, 263, 481, 776, 1387, 2567, 4539, 8077, 14329, 25589, 46648, 84839, 153497, 278093, 503244, 917222, 1678100, 3060188, 5584638, 10197411, 18619047, 34091728, 62438325, 114225230, 209134304, 382969204, 701383579
OFFSET
1,1
COMMENTS
Column 4 of A298494.
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) +a(n-2) +6*a(n-3) -14*a(n-4) -8*a(n-5) -12*a(n-6) +16*a(n-7) +24*a(n-8) +27*a(n-9) +102*a(n-10) +13*a(n-11) -99*a(n-12) -390*a(n-13) -297*a(n-14) +126*a(n-15) +559*a(n-16) +781*a(n-17) +129*a(n-18) -240*a(n-19) -723*a(n-20) -356*a(n-21) -201*a(n-22) -117*a(n-23) +59*a(n-24) -69*a(n-25) +401*a(n-26) +250*a(n-27) +595*a(n-28) +310*a(n-29) +46*a(n-30) -311*a(n-31) -636*a(n-32) -423*a(n-33) -181*a(n-34) +315*a(n-35) +344*a(n-36) +144*a(n-37) -84*a(n-38) -96*a(n-39) -12*a(n-40) +20*a(n-41) for n>43.
EXAMPLE
Some solutions for n=9
..0..0..1..0. .0..0..1..0. .0..0..1..1. .0..0..1..0. .0..0..1..1
..1..1..0..1. .1..1..0..1. .1..1..0..0. .1..1..0..0. .1..0..1..0
..1..0..1..0. .0..0..0..1. .0..1..1..1. .1..0..1..1. .0..1..0..1
..1..1..1..0. .1..0..1..0. .0..1..0..0. .0..0..0..0. .1..0..1..0
..1..1..1..0. .1..0..1..0. .0..1..1..1. .1..1..0..1. .0..1..0..1
..1..0..1..0. .1..0..1..0. .1..0..1..0. .0..0..1..1. .1..0..1..0
..0..0..1..1. .0..1..1..1. .1..0..1..0. .0..1..0..0. .0..1..0..1
..0..0..1..1. .0..1..0..0. .0..0..0..1. .0..0..0..1. .1..0..1..0
..1..0..1..0. .1..0..1..1. .1..1..0..1. .1..1..1..0. .0..1..0..1
CROSSREFS
Cf. A298494.
Sequence in context: A361585 A297885 A298290 * A299183 A155578 A115107
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 20 2018
STATUS
approved