|
|
A297885
|
|
Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero.
|
|
1
|
|
|
8, 29, 26, 36, 84, 134, 223, 396, 638, 1173, 2157, 3812, 6922, 12304, 21936, 40412, 73746, 133407, 243158, 440979, 803278, 1473594, 2689801, 4905976, 8967627, 16372815, 29949905, 54844798, 100263893, 183363553, 335520346, 613789492
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 4 of A297889.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) -3*a(n-4) -6*a(n-5) -6*a(n-6) -16*a(n-7) -11*a(n-8) +6*a(n-9) +60*a(n-10) +84*a(n-11) +44*a(n-12) -55*a(n-13) -155*a(n-14) -116*a(n-15) -26*a(n-16) +76*a(n-17) +47*a(n-18) +5*a(n-19) +9*a(n-20) +69*a(n-21) +139*a(n-22) +82*a(n-23) -18*a(n-24) -119*a(n-25) -105*a(n-26) -39*a(n-27) +14*a(n-28) +24*a(n-29) +10*a(n-30) for n>34
|
|
EXAMPLE
|
Some solutions for n=7
..0..0..1..0. .0..1..0..0. .0..1..1..1. .0..1..1..1. .0..1..1..1
..1..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..0..0. .0..1..0..1
..1..0..0..0. .1..0..0..0. .1..0..1..1. .1..0..0..1. .1..1..0..0
..0..0..1..1. .0..0..1..1. .0..1..0..0. .0..1..1..1. .1..1..0..0
..1..1..0..0. .1..1..0..0. .0..1..1..1. .1..1..0..0. .0..1..0..1
..0..0..0..1. .0..1..1..1. .1..0..1..0. .0..0..1..1. .1..0..1..0
..0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1
|
|
CROSSREFS
|
Cf. A297889.
Sequence in context: A146977 A068623 A361585 * A298290 A298490 A299183
Adjacent sequences: A297882 A297883 A297884 * A297886 A297887 A297888
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 07 2018
|
|
STATUS
|
approved
|
|
|
|