login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297885 Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero. 1
8, 29, 26, 36, 84, 134, 223, 396, 638, 1173, 2157, 3812, 6922, 12304, 21936, 40412, 73746, 133407, 243158, 440979, 803278, 1473594, 2689801, 4905976, 8967627, 16372815, 29949905, 54844798, 100263893, 183363553, 335520346, 613789492 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 4 of A297889.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) -3*a(n-4) -6*a(n-5) -6*a(n-6) -16*a(n-7) -11*a(n-8) +6*a(n-9) +60*a(n-10) +84*a(n-11) +44*a(n-12) -55*a(n-13) -155*a(n-14) -116*a(n-15) -26*a(n-16) +76*a(n-17) +47*a(n-18) +5*a(n-19) +9*a(n-20) +69*a(n-21) +139*a(n-22) +82*a(n-23) -18*a(n-24) -119*a(n-25) -105*a(n-26) -39*a(n-27) +14*a(n-28) +24*a(n-29) +10*a(n-30) for n>34

EXAMPLE

Some solutions for n=7

..0..0..1..0. .0..1..0..0. .0..1..1..1. .0..1..1..1. .0..1..1..1

..1..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..0..0. .0..1..0..1

..1..0..0..0. .1..0..0..0. .1..0..1..1. .1..0..0..1. .1..1..0..0

..0..0..1..1. .0..0..1..1. .0..1..0..0. .0..1..1..1. .1..1..0..0

..1..1..0..0. .1..1..0..0. .0..1..1..1. .1..1..0..0. .0..1..0..1

..0..0..0..1. .0..1..1..1. .1..0..1..0. .0..0..1..1. .1..0..1..0

..0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1

CROSSREFS

Cf. A297889.

Sequence in context: A146977 A068623 A361585 * A298290 A298490 A299183

Adjacent sequences: A297882 A297883 A297884 * A297886 A297887 A297888

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jan 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 19:07 EDT 2023. Contains 361510 sequences. (Running on oeis4.)