login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299183
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
2
8, 29, 27, 75, 191, 401, 952, 2258, 5275, 13250, 32268, 77769, 191931, 469537, 1146722, 2829540, 6941097, 16987427, 41832684, 102763482, 252007870, 619897823, 1523184474, 3738568449, 9191254923, 22587057264, 55465702765, 136320314139
OFFSET
1,1
COMMENTS
Column 4 of A299187.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +a(n-2) +11*a(n-3) -49*a(n-4) -18*a(n-5) +11*a(n-6) +218*a(n-7) +80*a(n-8) -244*a(n-9) +84*a(n-10) -286*a(n-11) -825*a(n-12) -1687*a(n-13) +2587*a(n-14) +4682*a(n-15) -576*a(n-16) -6980*a(n-17) +1611*a(n-18) +10469*a(n-19) -3111*a(n-20) -19296*a(n-21) -3761*a(n-22) +16046*a(n-23) +2091*a(n-24) -2785*a(n-25) +718*a(n-26) +21722*a(n-27) -16663*a(n-28) +13289*a(n-29) -14849*a(n-30) -23694*a(n-31) -14617*a(n-32) +65721*a(n-33) -25438*a(n-34) -46244*a(n-35) +41970*a(n-36) +102361*a(n-37) -104134*a(n-38) -38629*a(n-39) +29336*a(n-40) +56521*a(n-41) -83376*a(n-42) -20392*a(n-43) +63523*a(n-44) -2523*a(n-45) +4025*a(n-46) -9755*a(n-47) +11795*a(n-48) -3658*a(n-49) -4777*a(n-50) +5165*a(n-51) -9718*a(n-52) +4047*a(n-53) +2228*a(n-54) -1986*a(n-55) +2919*a(n-56) -1872*a(n-57) -1708*a(n-58) +367*a(n-59) -180*a(n-60) +69*a(n-61) +272*a(n-62) +76*a(n-63) +32*a(n-64) +14*a(n-65) -24*a(n-66) -8*a(n-67) for n>70
EXAMPLE
Some solutions for n=5
..0..0..1..1. .0..0..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..0
..1..0..1..0. .1..0..1..0. .0..0..0..1. .0..1..1..0. .1..0..1..0
..1..1..1..0. .1..1..1..1. .0..0..0..1. .1..0..1..0. .1..1..1..1
..1..1..1..0. .1..1..1..1. .0..1..0..1. .0..1..1..0. .1..1..1..1
..0..1..1..1. .1..0..0..1. .0..0..0..1. .0..1..0..1. .0..1..1..0
CROSSREFS
Cf. A299187.
Sequence in context: A297885 A298290 A298490 * A155578 A115107 A298217
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 04 2018
STATUS
approved