login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298486
Square array T(n, k), n >= 0, k >= 0, read by antidiagonals upwards: T(n, k) = the (k+1)-th nonnegative number m such that n + m can be computed with carry in decimal base.
1
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0, 1, 20, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 1
OFFSET
0,6
COMMENTS
The corresponding sequence for the binary base is A295653.
LINKS
FORMULA
For any n >= 0 and k >= 0:
- T(0, k) = k,
- T(9, k) = 10 * k,
- T(10^n - 1, k) = 10^n * k,
- T(n, 0) = 0,
- T(n, 1) = 10^A122840(n+1),
- T(n, k + A298372(n)) = k + 10^A004218(n+1) (i.e. each row is linear).
EXAMPLE
Square array begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 ...
---+-------------------------------------------------
0| 0 1 2 3 4 5 6 7 8 9 10 ... <-- A001477
1| 0 1 2 3 4 5 6 7 8 10 11 ...
2| 0 1 2 3 4 5 6 7 10 11 12 ...
3| 0 1 2 3 4 5 6 10 11 12 13 ...
4| 0 1 2 3 4 5 10 11 12 13 14 ...
5| 0 1 2 3 4 10 11 12 13 14 20 ...
6| 0 1 2 3 10 11 12 13 20 21 22 ...
7| 0 1 2 10 11 12 20 21 22 30 31 ...
8| 0 1 10 11 20 21 30 31 40 41 50 ...
9| 0 10 20 30 40 50 60 70 80 90 100 ... <-- A008592
10| 0 1 2 3 4 5 6 7 8 9 10 ...
PROG
(PARI) T(n, k, {base=10}) = my (v=0, p=1); while (k, my (r=base - (n%base)); v += p*(k%r); n \= base; k \= r; p *= base); v
CROSSREFS
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jan 20 2018
STATUS
approved