Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Feb 01 2018 04:21:23
%S 1,10,19,43,67,83,92,293,691,958,7849,49670,94976,880096,7090761,
%T 80890670,798992994,9999069559,808009099075,8979948969844,
%U 898989690790838
%N a(n) is the least number with persistence n as defined using A114570.
%C Repeat A114570 until one digit remains.
%C a(n) is the first number with persistence n in base 10.
%C a(n+1) <= Sum_{i=0..a(n)-1} 10^i showing the sequence is infinite.
%C a(n) does not necessarily pass through a(n-1) on the first step.
%e a(5) = 83 because:
%e 83 -> 8^2 + 3^1 = 67;
%e 67 -> 6^2 + 7^1 = 43;
%e 43 -> 4^2 + 3^1 = 19;
%e 17 -> 1^2 + 9^1 = 10;
%e 10 -> 1^2 + 0^1 = 1;
%e 83 is the least integer to take 5 steps to get to 1 digit.
%o (PARI) a114570(n) = my(d=digits(n), k=#d); sum(i=1, k, d[i]^(k+1-i));
%o p(n) = my(ip=0); while(n >= 10, n = a114570(n); ip++); ip;
%o a(n) = {my(k=1); while (p(k) != n, k++); k;} \\ _Michel Marcus_, Jan 25 2018
%Y Cf. A114570.
%K nonn,base,more
%O 0,2
%A _John Harmon_, Jan 20 2018
%E a(19) from _Giovanni Resta_, Jan 22 2018
%E a(20) from _Giovanni Resta_, Feb 01 2018