login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298466
The first of two consecutive primes the sum of which is equal to the sum of two consecutive heptagonal numbers.
5
3, 23, 433, 16481, 24593, 167953, 173183, 183871, 192097, 223781, 414521, 447743, 477857, 508951, 513473, 792983, 927803, 996019, 1034251, 1250309, 1285937, 2224063, 2281003, 2456191, 2607109, 2741561, 2773073, 3210353, 3336209, 4206817, 4403647, 4632161
OFFSET
1,1
EXAMPLE
23 is in the sequence because 23+29 (consecutive primes) = 52 = 18+34 (consecutive heptagonal numbers).
MATHEMATICA
Module[{hep=Total/@Partition[PolygonalNumber[7, Range[1500]], 2, 1]}, Select[ Partition[Prime[Range[PrimePi[Max[hep]/2]]], 2, 1], MemberQ[hep, Total[#]]&]][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 04 2019 *)
PROG
(PARI) L=List(); forprime(p=2, 6000000, q=nextprime(p+1); t=p+q; if(issquare(20*t-16, &sq) && (sq-2)%10==0, u=(sq-2)\10; listput(L, p))); Vec(L)
(Python)
from sympy import prevprime, nextprime
A298466_list, n, m = [], 1 , 8
while len(A298466_list) < 10000:
k = prevprime(m//2)
if k + nextprime(k) == m:
A298466_list.append(k)
n += 1
m += 10*n-3 # Chai Wah Wu, Jan 19 2018
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 19 2018
STATUS
approved