login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298464
The first of two consecutive primes the sum of which is equal to the sum of two consecutive pentagonal numbers.
5
79, 3643, 10909, 37123, 56053, 70849, 78889, 125551, 178877, 209063, 258743, 330409, 350411, 395261, 439559, 469279, 479387, 499969, 620813, 663997, 754723, 828811, 878597, 901709, 1026709, 1087147, 1170397, 1202429, 1213189, 1234873, 1340477, 1510013
OFFSET
1,1
EXAMPLE
79 is in the sequence because 79+83 (consecutive primes) = 162 = 70+92 (consecutive pentagonal numbers).
MATHEMATICA
Block[{s = Total /@ Partition[PolygonalNumber[5, Range[10^3]], 2, 1], t}, t = Partition[Prime@ Range@ PrimePi[2 Last[s]], 2, 1]; Select[t, MemberQ[s, Total@ #] &][[All, 1]]] (* Michael De Vlieger, Jan 21 2018 *)
PROG
(PARI) L=List(); forprime(p=2, 1600000, q=nextprime(p+1); t=p+q; if(issquare(12*t-8, &sq) && (sq-2)%6==0, u=(sq-2)\6; listput(L, p))); Vec(L)
(Python)
from __future__ import division
from sympy import prevprime, nextprime
A298464_list, n, m = [], 1 , 6
while len(A298464_list) < 10000:
k = prevprime(m//2)
if k + nextprime(k) == m:
A298464_list.append(k)
n += 1
m += 6*n-1 # Chai Wah Wu, Jan 20 2018
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 19 2018
STATUS
approved