The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078114 Pinomial primes of order 4: primes of the form 3*x^4 + 1*x^3 + 4*x^2 + 1*x + 5, x a positive integer. 3
 79, 4259, 322079, 1391239, 9416279, 57229199, 180621149, 583332179, 666475879, 758206139, 1090726199, 1366313119, 1780616609, 3017394239, 3297759379, 3754381249, 8119069289, 9639336299, 12901941509, 16441316629, 17940244339 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that only primes that end in 9 occur in the sequence of order 4. This is easy to prove by considering the ending digit combinations. actually, order 4 with odd x produces an even number so only even numbers need be considered. For order 5, x<= 10, y = 3*x^5 + x^4 + 4*x^3 + x^2 + 5*x + 9. Sequence is 23 167 10559 54287 104561 314159 ... Allowing any integral value for x, the sequence would read: 5, 59, 79, 769, 4259, 113279, 310379, 322079, 694039, 983789, 1391239, 1825129, 9416279,... (M. F. Hasler) One could also reverse the order of polynomial coefficients, i.e. list primes p = 3 + 1*x + 4*x^2 + 1*x^3 + 5*x^4. For a base independent approach, one could take coefficients from the continued fraction expansion of Pi. - M. F. Hasler, Jun 17 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 FORMULA Only even x can give a prime. MATHEMATICA Select[Table[3*n^4+n^3+4*n^2+n+5, {n, 1, 300}], PrimeQ] (* Vincenzo Librandi, Jul 15 2012 *) PROG (PARI) /* This program is hard-wired for order 4. Change the polynomial y for more terms. */ pinomial(n) = { ct=0; sr=0; for(x=1, n, /* odd x => even y */ y = 3*x^4 + x^3 + 4*x^2 + x + 5; /* y = 3*x^5 + x^4 + 4*x^3 + x^2 + 5*x + 9; /* order 5*/ if(isprime(y), ct+=1; print1(y" "); ); ) } (PARI) polyprimes( N=25 /*# of terms*/, P=[3, 1, 4, 1, 5], X=1/*starting value*/, a=[] )={ local(t); P=Pol(P); while( #a

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 12:55 EDT 2024. Contains 371900 sequences. (Running on oeis4.)