login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017795
Binomial coefficients C(79,n).
3
1, 79, 3081, 79079, 1502501, 22537515, 277962685, 2898753715, 26088783435, 205811513765, 1440680596355, 9036996468045, 51209646652255, 263926640438545, 1244225590638855, 5391644226101705, 21566576904406820, 79923196763389980, 275291011073898820
OFFSET
0,2
COMMENTS
Row 79 of A007318.
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..79 (full sequence)
FORMULA
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: (1+x)^79.
E.g.f.: 1F1(-79; 1; -x), where 1F1 is the confluent hypergeometric function. (End)
MAPLE
seq(binomial(79, n), n=0..79); # Nathaniel Johnston, Jun 24 2011
MATHEMATICA
Binomial[79, Range[0, 79]] (* Harvey P. Dale, Jul 06 2017 *)
PROG
(Sage) [binomial(79, n) for n in range(17)] # Zerinvary Lajos, May 29 2009
(PARI) vector(79, n, n--; binomial(79, n)) \\ G. C. Greubel, Nov 15 2018
(Magma) [Binomial(79, n): n in [0..79]]; // G. C. Greubel, Nov 15 2018
(GAP) List([0..79], n -> Binomial(79, n)); # G. C. Greubel, Nov 15 2018
KEYWORD
nonn,fini,full,easy
STATUS
approved