login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358069
Number of configurations of the 20 Vertex model on a square grid n X n with domain wall boundary conditions.
0
1, 3, 23, 433, 19705, 2151843, 561696335, 349667866305, 518369549769169, 1828200035691135203, 15328648070256551849383, 305390661137273761896820529, 14451387790147329024372260663689, 1623803344366103974773282069705064899, 433134712202745984875469054553527204825375
OFFSET
1,2
COMMENTS
Also number of quarter-turn symmetric domino tilings of a holey Aztec quasi-square.
LINKS
Paul Barry, A Riordan array family for some integrable lattice models, arXiv:2409.09547 [math.CO], 2024. See p. 8.
P. Di Francesco and E. Guitter, Twenty-Vertex model with domain wall boundaries and domino tilings, Electr. J. Combin. 27-2 (2020), P2.13.
FORMULA
a(n) = det A(n), where A(n) is n X n matrix (a[i,j]), 1 <= i,j <= n, with a[i,j] = [x^(i-1)*y^(j-1)] 1/(1-x*y)+2*x/((1-x)*(1-x-y-x*y)).
MAPLE
g:= 1/(1-x*y)+2*x/((1-x)*(1-x-y-x*y)):
S:= map(series, series(g, x, 21), y, 21):
A:= Matrix(20, 20, (i, j) -> coeff(coeff(S, x, i), y, j)):
1, seq(LinearAlgebra:-Determinant(A[1..n, 1..n]), n=1..20); # Robert Israel, Dec 18 2022
MATHEMATICA
a[n_]:=Det[Table[KroneckerDelta[i, j] + Coefficient[Normal[Series[(2 x)/((1 - x) (1 - x - y - x y)) x y, {x, 0, n}, {y, 0, n}]], x^(i) y^(j)], {i, 1, n}, {j, 1, n}]]; Array[a, 15]
CROSSREFS
Sequence in context: A271851 A133338 A298466 * A116986 A271962 A268668
KEYWORD
nonn
AUTHOR
STATUS
approved