The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298311 Expansion of Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3). 2
 1, 3, 7, 16, 32, 61, 112, 197, 336, 560, 912, 1456, 2287, 3536, 5392, 8123, 12096, 17824, 26016, 37632, 53984, 76848, 108601, 152432, 212592, 294704, 406201, 556864, 759488, 1030784, 1392496, 1872784, 2508048, 3345184, 4444384, 5882747, 7758736, 10197712, 13358944, 17444256, 22708719 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of partitions of n where there are 3 kinds of odd parts. Convolution of the sequences A000009 and A015128. LINKS FORMULA G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3). G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^k). a(n) ~ exp(2*Pi*sqrt(n/3)) / (2^(5/2)*sqrt(3)*n). - Vaclav Kotesovec, Apr 08 2018 G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 4. Cf. A000041 (k = 1), A015128 (k = 2), A278690 (k = 3) and A160461 (k = 5). - Peter Bala, Nov 17 2020 MATHEMATICA nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2 k)) (1 - x^(2 k - 1))^3), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 40; CoefficientList[Series[Product[(1 + x^k)^2/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000009, A000041, A000716, A015128, A029862, A029863, A160461, A182818, A278690. Sequence in context: A192964 A293351 A179904 * A161810 A318604 A084631 Adjacent sequences:  A298308 A298309 A298310 * A298312 A298313 A298314 KEYWORD nonn,easy,changed AUTHOR Ilya Gutkovskiy, Jan 17 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 22:57 EST 2020. Contains 338616 sequences. (Running on oeis4.)