login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298309
Triangle read by rows: T(n,m) = Sum_{i=0..n+1} C(n-i+1,i-1)*C(n-i+1,i)*C(n-i+1,m-i+1).
0
0, 1, 1, 2, 4, 2, 3, 11, 13, 5, 4, 25, 51, 43, 13, 5, 49, 149, 203, 130, 32, 6, 86, 364, 716, 734, 382, 80, 7, 139, 787, 2099, 3061, 2521, 1105, 201, 8, 211, 1553, 5385, 10455, 12093, 8311, 3143, 505, 9, 305, 2851, 12473, 30918, 47064, 45075, 26581, 8843, 1273
OFFSET
0,4
FORMULA
G.f.: ((1-(1-x*y)*(x*y+x))/sqrt((1-(x*y+1)*(x*y+x))^2-4*x*y*(x*y+x)^2)-1)/(2*x*y).
EXAMPLE
Triangle begins
0;
1, 1;
2, 4, 2;
3, 11, 13, 5;
4, 25, 51, 43, 13;
5, 49, 149, 203, 130, 32;
6, 86, 364, 716, 734, 382, 80;
7, 139, 787, 2099, 3061, 2521, 1105, 201;
PROG
(Maxima)
T(n, m):=sum(binomial(n-i+1, i-1)*binomial(n-i+1, i)*binomial(n-i+1, m-i+1), i, 0, n+1);
(PARI) T(n, m) = sum(i=0, n+1, binomial(n-i+1, i-1)*binomial(n-i+1, i)*binomial(n-i+1, m-i+1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Jan 19 2018
CROSSREFS
T(n,n) is A110320(n).
Sequence in context: A368434 A134400 A016095 * A349205 A181399 A349207
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Jan 17 2018
STATUS
approved