login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298102
The first of five consecutive integers the sum of which is equal to the sum of five consecutive prime numbers.
2
77, 279, 293, 327, 347, 353, 401, 437, 509, 641, 675, 683, 785, 803, 839, 885, 947, 961, 1169, 1177, 1193, 1239, 1325, 1337, 1395, 1433, 1461, 1501, 1545, 1639, 1683, 1715, 1731, 1777, 1809, 1915, 1955, 1989, 2031, 2059, 2139, 2145, 2345, 2387, 2393, 2431
OFFSET
1,1
COMMENTS
Also: Number m such that 5 * m + 10 is the sum of 5 consecutive primes. - David A. Corneth, Jan 12 2018
LINKS
EXAMPLE
77 is in the sequence because 77+78+79+80+81 = 395 = 71+73+79+83+89.
MATHEMATICA
p = {2, 3, 5, 7, 11}; lst = {}; While[p[[1]] < 3001, t = Plus @@ p; If[Mod[t, 10] == 5, AppendTo[lst, (t - 10)/5]]; p = Join[Rest@p, {NextPrime[p[[-1]]]}]]; lst (* Robert G. Wilson v, Jan 14 2018 *)
Select[(#-10)/5&/@(Total/@Partition[Prime[Range[400]], 5, 1]), IntegerQ] (* Harvey P. Dale, Jun 22 2019 *)
PROG
(PARI) L=List(); forprime(p=2, 2500, q=nextprime(p+1); r=nextprime(q+1); s=nextprime(r+1); t=nextprime(s+1); u=p+q+r+s+t; if((u-10)%5==0, listput(L, (u-10)\5))); Vec(L)
(PARI) upto(n) = my(res = List(), pr = primes(5), s = vecsum(pr)); while(pr[5] < n, if(s == 5 * pr[3], listput(res, pr[1])); lp = nextprime(pr[5] + 1); s += (lp - pr[1]); for(i = 1, 4, pr[i] = pr[i+1]); pr[5] = lp); res \\ David A. Corneth, Jan 12 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 12 2018
EXTENSIONS
New name by David A. Corneth, Jan 12 2018
STATUS
approved