login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158767
a(n) = 76*n^2 + 1.
2
1, 77, 305, 685, 1217, 1901, 2737, 3725, 4865, 6157, 7601, 9197, 10945, 12845, 14897, 17101, 19457, 21965, 24625, 27437, 30401, 33517, 36785, 40205, 43777, 47501, 51377, 55405, 59585, 63917, 68401, 73037, 77825, 82765, 87857, 93101, 98497, 104045, 109745, 115597
OFFSET
0,2
COMMENTS
The identity (76*n^2 + 1)^2 - (1444*n^2 + 38)*(2*n)^2 = 1 can be written as a(n)^2 - A158766(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: -(1 + 74*x + 77*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 23 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(19)))*Pi/(2*sqrt(19)) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(19)))*Pi/(2*sqrt(19)) + 1)/2. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 77, 305}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
76*Range[0, 40]^2+1 (* Harvey P. Dale, Jan 19 2016 *)
PROG
(Magma) I:=[1, 77, 305]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
(PARI) for(n=0, 40, print1(76*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 21 2012
CROSSREFS
Sequence in context: A029558 A156652 A298102 * A158771 A331976 A020206
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 26 2009
EXTENSIONS
Comment rewritten, a(0) added, and formula replaced by R. J. Mathar, Oct 22 2009
STATUS
approved