login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158768 a(n) = 1521*n^2 + 39. 2
39, 1560, 6123, 13728, 24375, 38064, 54795, 74568, 97383, 123240, 152139, 184080, 219063, 257088, 298155, 342264, 389415, 439608, 492843, 549120, 608439, 670800, 736203, 804648, 876135, 950664, 1028235, 1108848, 1192503, 1279200, 1368939 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The identity (78*n^2 + 1)^2 - (1521*n^2 + 39)*(2*n)^2 = 1 can be written as A158769(n)^2 - a(n)*A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Vincenzo Librandi, X^2-AY^2=1

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: -39*(1 + 37*x + 40*x^2)/(x-1)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {39, 1560, 6123}, 50] (* Vincenzo Librandi, Feb 21 2012 *)

PROG

(MAGMA) I:=[39, 1560, 6123]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012

(PARI) for(n=0, 40, print1(1521*n^2 + 39", ")); \\ Vincenzo Librandi, Feb 21 2012

CROSSREFS

Cf. A005843, A158769.

Sequence in context: A112617 A009983 A269028 * A139191 A319490 A327589

Adjacent sequences:  A158765 A158766 A158767 * A158769 A158770 A158771

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 26 2009

EXTENSIONS

Comment rewritten, a(0) added, and formula replaced by R. J. Mathar, Oct 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 10:52 EST 2021. Contains 349419 sequences. (Running on oeis4.)