login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298077
Oblong numbers that are the sum of 2 successive primes.
1
12, 30, 42, 90, 210, 240, 462, 600, 702, 930, 1482, 1560, 1722, 2352, 2862, 2970, 6162, 6480, 6642, 7656, 8010, 8556, 10920, 13572, 13806, 14280, 14762, 15006, 15750, 16002, 21462, 22350, 22650, 23562, 24492, 25122, 27060, 27390, 29070, 29412, 34410, 34782
OFFSET
1,1
COMMENTS
Is this sequence infinite?
Includes all n*(n+1) for which n*(n+1)/2 - 2 and n*(n+1)/2 + 2 are prime. The generalized Bunyakovsky conjecture implies there are infinitely many of these. - Robert Israel, Feb 11 2018
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios!
EXAMPLE
a(4)=90 because 90 is oblong (i.e., 9*10) and the sum of 2 successive primes (i.e., 43+47).
MAPLE
filter:= proc(n) not isprime(n/2) and prevprime(n/2)+nextprime(n/2) = n end proc:
select(filter, [seq(n*(n+1), n=2..200)]); # Robert Israel, Feb 11 2018
MATHEMATICA
Select[Total /@ Partition[Prime@ Range[2^11], 2, 1], IntegerQ@ Sqrt[4 # + 1] &] (* Michael De Vlieger, Jan 11 2018 *)
PROG
(PARI) isok(n) = my(p = 2); forprime(q=3, n, if (p+q==n, return (1)); p = q);
lista(nn) = {for (n=1, nn, m = n*(n+1); if (isok(m), print1(m, ", ")); ); } \\ Michel Marcus, Jan 13 2018
(Python)
from __future__ import division
from sympy import prevprime, nextprime, isprime
A298077_list = [n*(n+1) for n in range(3, 10**4) if prevprime(n*(n+1)//2) + nextprime(n*(n+1)//2) == n*(n+1)] # Chai Wah Wu, Feb 11 2018
CROSSREFS
Intersection of A001043 and A002378.
Sequence in context: A145470 A108278 A364975 * A135502 A256620 A125582
KEYWORD
nonn
AUTHOR
G. L. Honaker, Jr., Jan 11 2018
STATUS
approved